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Identifying Children with Autism Spectrum Disorder Based on Their
Face Processing Abnormality: A Machine Learning Framework

Wenbo Liu, Ming Li, and Li Yi

The atypical face scanning patterns in individuals with Autism Spectrum Disorder (ASD) has been repeatedly discov-
ered by previous research. The present study examined whether their face scanning patterns could be potentially use-
ful to identify children with ASD by adopting the machine learning algorithm for the classification purpose.
Particularly, we applied the machine learning method to analyze an eye movement dataset from a face recognition
task [Yi et al., 2016], to classify children with and without ASD. We evaluated the performance of our model in terms
of its accuracy, sensitivity, and specificity of classifying ASD. Results indicated promising evidence for applying the
machine learning algorithm based on the face scanning patterns to identify children with ASD, with a maximum
classification accuracy of 88.51%. Nevertheless, our study is still preliminary with some constraints that may apply in
the clinical practice. Future research should shed light on further valuation of our method and contribute to the
development of a multitask and multimodel approach to aid the process of early detection and diagnosis of ASD.
Autism Res 2016, 00: 000–000. VC 2016 International Society for Autism Research, Wiley Periodicals, Inc.
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Introduction

Autism Spectrum Disorder (ASD) is a heritable, lifelong

neurodevelopmental disorder with complicated causes

and courses [Amaral, Schumann, & Nordahl, 2008].

One of the key symptoms in ASD is their impaired

social interaction and interpersonal communication

[DSM-V, APA, 2013]. Since interpersonal interaction

and communication rely heavily on interpreting facial

cues of other people, research on the face processing in

ASD has attracted intensive attention in the last decade

[see Tanaka & Sung, 2013, for a review]. Overall, indi-

viduals with ASD have difficulty recognizing human

faces and interpreting facial emotions [Tanaka & Sung,

2013]. Eye tracking studies further reveal that individu-

als with ASD exhibit reduced to attention to human

faces, especially the eye region, relative to typically

developing (TD) individuals [see Falck-Ytter & von

Hofsten, 2011, for a review]. Tanaka and Sung [2013]

attributed this eye-avoidance-face-processing pattern of

ASD to their adaptive strategy to avoid the social threat-

ening and discomfort elicited by direct eye contact. The

reduced attention to faces and diminished eye contact

has been found in individuals with ASD as early as the

first year of life [e.g. Osterling, Dawson, & Munson,

2002; Zwaigenbaum, Bryson, Rogers, Roberts, Brian, &

Szatmari, 2005]. Jones and Klin [2013] found that a

decline in eye fixation at 2–6 months could predict

later diagnosis of ASD. These findings suggest the possi-

bility of using eye movements during face processing as

a potential indicator of ASD. In this paper, we explored

the possibility of using the machine learning algorithm

to identify ASD based on their eye movements when

viewing faces.

Machine learning is a procedure that trains the com-

puter algorithm to analyze a set of observed data and

statistically learns the latent patterns. It has been used

to perform a variety of prediction tasks in psychology

recently, for example, the emerging field of multimodel

human sensing, where the states of human, such as

emotion, are analyzed with computer vision and speech

techniques based on machine learning [Bartlett, Little-

wort, Lainscsek, Fasel, & Movellan, 2004]. Machine

learning has also been applied to autism research in

several previous studies based on the behavioral obser-

vations or brain activities [e.g. Crippa et al., 2015; Desh-

pande, Libero, Sreenivasan, Deshpande, & Kana, 2013;

Duda, Kosmicki, & Wall, 2014; Kosmicki, Sochat, Duda,
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& Wall, 2015; Stahl, Pickles, Elsabbagh, Johnson, &

BASIS Team, 2012; Zhou, Yu, & Duong, 2014]. Despite

such a fact, the importance and power of machine

learning is yet to be fully discovered in autism research.

While machine learning in general usually consists of

feature extraction, feature selection, model learning,

and prediction, a number of machine-learning-based

autism studies mainly focus on how to effectively select

a subset of features from large amounts of existing fea-

tures of the standardized diagnostic scales to shorten

the diagnosis time. For instance, Kosmicki et al. [2015]

proposed a machine-learning-based feature selection

framework to reduce the number of behavioral features

and measurements in Autism Diagnostic Observation

Schedule (ADOS). Duda et al. [2014] used machine

learning to train a classifier which can reduce 72% in

length in the ADOS-G test with 97% accuracy. Some

recent autism studies start to address the task of classifi-

cation and prediction besides the feature selection

[Crippa et al., 2015; Stahl et al., 2012; Zhou et al.,

2014]. For example, a machine learning framework was

proposed to classify low-functioning children with ASD

based on the kinematic analysis of a reach-to-drop task

[Crippa et al., 2015]. This motivated us to take the face

scanning patterns, which have been consistently found

to be atypical in ASD by previous studies, as input to

classify children with ASD. Eye movements encode rich

information about the attention distribution and cogni-

tive strategies during face viewing that may indicate

the potential risk of ASD, such as the fixation durations

and counts at different facial areas, the speed and direc-

tion of the saccades, as well as the temporal informa-

tion of the face scanning pattern. Automatically

handling eye gaze data with machine learning methods

makes the prediction process much more scalable than

manually doing so. The fundamental purpose of this

paper is to propose a machine learning framework

which learns from the observed face scanning patterns

to automatically identify children with ASD. We hope

that such a framework can generate useful midlevel fea-

tures in the ASD evaluation, and that by adopting eye

movement, subjective factors can be reduced to make

the ASD evaluation a more objective process.

Our work to some extent shares the similar spirit

with Crippa et al. [2015], except that we focus on ana-

lyzing face scanning patterns to predict ASD. We

adopted the eye movement dataset from a previous

published work, which asked children with and without

ASD to recognize same- and other-race face while their

eye movements being tracked [Yi, Quinn, Fan, Huang,

Feng, Li, & Lee, 2016]. Different from the previous liter-

ature focusing on the statistical significance of ASD

symptoms conveyed by the face scanning patterns, we

addressed the prediction problem and sought to pro-

pose a machine learning solution to measure the poten-

tial ASD risk based on the face scanning patterns in a

face recognition task. Particularly, we used a data-

driven approach to extract features from the face scan-

ning data and a support vector machine (SVM) to do

the classification. The predictive value of this machine

learning model was evaluated in terms of its accuracy,

specificity, and sensitivity, and so on.

Method
Description of the Dataset

The dataset used in the current paper included three

groups of participants: 29 4- to 11-year-old Chinese

children with ASD, 29 Chinese TD children matched

with the chronological age, and another group of 29

Chinese TD children matched with IQ (see Table 1 for

details). All children with ASD were diagnosed by expe-

rienced clinicians and met the diagnostic criteria for

Autism Spectrum Disorder according to the DSM-IV

[APA, 2000]. Due to the limited access to the ADI-R and

ADOS in China, we confirmed the diagnosis using the

Chinese version of Autism Spectrum Quotient: Child-

ren’s Version [AQ-Child; Auyeung, Baron-Cohen,

Wheelwright, & Allison, 2008].

Children were asked to memorize six faces (three

Chinese faces as the same-race faces and three Cauca-

sian faces as the other-race faces), and later tested to

recognize these faces from 18 novel faces, including

same- and other-race faces (width: 500 pixels, height:

700 pixels, resolution: 72 pixels per in.). All face stimuli

were gray-scale and front-view, with their external

Table 1. Participant Characteristics in Each Group

Male/Female Mean age in years (SD) NVIQa raw score (SD) Autism quotient (SD)

ASD 25/4 7.90 (1.45) 22.29 (10.80) 85.48 (14.90)

TD-Age 25/4 7.86 (1.38) 29.90 (9.96) 62.74 (12.57)

TD-Ability 25/4 5.74 (1.01) 22.28 (7.90) 64.03 (12.21)

Difference

(t-test)

ASD vs. TD-Age N/A 0.09 22.77** 6.15***

ASD vs. TD-Ability N/A 6.56*** 0.00 6.00***

TD-Age vs. TD-Ability N/A 6.69*** 3.23** 20.39

Note. aIQ was measured by the Combined Raven Test (CRT-C2).

***p< .001; **p< .01; *p< .05
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features (e.g. hair and ears) removed with an ellipse-

shaped window. There were there study blocks, and in

each study block, children were asked to remember two

faces (one Chinese face and one Caucasian face, each

presented for 3 sec). Each study block was followed by

three test blocks in which children were asked to iden-

tify whether each face was seen before or not. Each test

block comprised two target faces and two foil faces,

which were presented until children responded. Child-

ren’s eye movements during the study and test phases

were recorded by a Tobii T60 eye-tracker (sample rate:

60 Hz; both eyes were tracked) with the Tobii Studio

software. More details of the participants, the material,

and the experimental procedures were provided in the

Yi et al. [2016].

Yi et al. [2016] analyzed the eye movement data

based on the area of interest (AOI) approach to com-

pare the fixation duration between groups within each

predefined face region (e.g. eyes, nose, and mouth). In

this paper, we proposed a new framework based on the

machine learning algorithm to analyze the eye move-

ment data during face processing so as to identify the

ASD symptoms.

Framework of Proposed Method. We proposed a

new framework using the machine learning algorithm

to identify children with ASD based on the face scan-

ning patterns. Particularly, we obtained the observa-

tions of eye movement patterns from categorized

participants (ASD or TD children), with which we

attempted to design a system to automatically classify

children with ASD on a new observation. In the rest of

this section, we will describe the detailed procedures of

our proposed ASD classification framework, including

the feature representation to select relevant features,

and the classification to assign group membership

based on the selected features (Figure 1). We performed

the whole machine learning process on the Matlab

platform.

Feature Representation. Feature representation is a

crucial part of our classification framework to select rel-

evant features for the classification purpose. A discrimi-

native (good) feature should maximally reveal the

statistical difference between participants from different

groups, while being minimally sensitive to intra-group

variations. While the sequence of eye fixation coordi-

nates or face regions can be incorporated as a temporal

feature, we did not adopt these temporal features here

due to the sparseness of cross-region transition in our

training data. We therefore considered “orderless” fea-

tures where the measurement is not sensitive to tempo-

ral order of coordinates. What we measured was the

frequency distribution of coordinates which treated all

face scanning coordinates equally without temporal

information. More importantly, we used the frequency

distribution as a discriminative feature for the ASD clas-

sification, considering the existing evidence on the cor-

relation between the coordinate frequency distribution

when scanning faces and the ASD symptoms [Yi et al.,

2013, 2014]. Numerous studies have indicated that chil-

dren and adults with ASD show atypical visual atten-

tions to faces compared to their TD counterparts [e.g.

Pelphrey, Sasson, Reznick, Paul, Goldman, & Piven,

2002; Yi et al., 2013]. Such a face scanning atypicality

was directly reflected in the abnormality of ASD in the

distributions of fixation coordinates, which serves as a

feature in our framework. The feature representation

includes two procedures: the facial region partitioning

with K-means and the histogram feature extraction.

We performed the quantization of fixation coordi-

nates with the K-means algorithm, where fixation coor-

dinates are clustered and divided into K different

clusters with distinct cluster centroids, as shown in

Figure 2. The K-means quantization was conducted

based on the fixation coordinate data of all participants.

Each observed coordinate was assigned to the cluster

with the closest centroid. Such quantization results in

the partitioning of face images into K different cell-like

regions, such that fixations falling into the same region

indicate close proximity in the visual attention location

[Hartigan & Wong, 1979]. Compared to the well-known

Area of Interest (AOI) based approach, our quantization

strategy was more data-driven oriented. The AOI

approach is a “top-down” process which determines the

partitioned region boundary empirically and could be

influenced by the semantic meaning of face parsing

without statistical justification [Yi et al., 2014]. In con-

trast, our data-driven approach can represent face scan-

ning “hot spots” by generating partitions based on

statistical distribution of coordinates.

Given the sequence of the fixation coordinates from

each face viewed by every participant, we assigned each

coordinate to the most proximal cluster centroid

obtained by K-means and counted the number of

assignments for each cluster. Then the assignment

counts were normalized by being divided by the total

number of coordinates. As a result, a histogram feature

Figure 1. Flowchart of the proposed ASD classification
framework.
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was defined to decode the frequency distribution of the

visual attentions on each part of the face.

Since the extracted histogram is an image-level fea-

ture encoding the visual attention on a single face, we

repeated the histogram extraction process for every face

viewed by each participant, to obtain a training set

whose labels are determined by the participant catego-

ries (i.e. ASD group, aged-matched TD group, and IQ-

matched TD group).

Classification. The classification is the process to

use the selected features to assign group labels to the

participants. Given the labeled features, the classifica-

tion algorithm could build a classifier that assigns new

examples into different categories. The classification

process included the following steps: the generation of

the training and testing data, the image-level classifica-

tion, and the participant-level classification.

Given a set of labeled participants, we used the

“leave-one-out” cross-validation strategy to separate the

original data into the training dataset and the testing

dataset [Vapnik, 1998]. Each time, one out of all partici-

pants was selected sequentially as the testing partici-

pant while the classification model was learned

according to the histogram features from the rest of the

participants. The learned model was then tested, and

then both the image-level scores and the participant-

level scores for the test participant were returned. Such

a “leave-out-and-evaluate” process was repeatedly per-

formed for all participants included in our dataset.

We started with the image-level ASD classification

based on the extracted histograms containing the visual

attention information on single faces, followed by the

participant-level classification. At the training stage, a

SVM classifier was trained based on the labeled histo-

grams [Cortes & Vapnik, 1995; Chapelle, Haffner, &

Vapnik, 1999]. The SVM attempted to find a linear deci-

sion boundary with a maximum margin separating the

data into two classes. Considering that the data were

not linearly separable, we adopted the Radial Basis

Function (RBF) kernel SVM which performed a nonlin-

ear projection of the data into a high-dimensional space

to make the data more linearly separable [Hsu, 2003].

During the testing phase, the learned SVM model

made a classification for the group membership using

each testing histogram feature with a corresponding

confidence score. The sign of the score can be either

positive or negative to indicate the classification of the

histogram feature. The absolute value of the confidence

score measures the distance of the testing sample from

the decision boundary. A higher confidence score indi-

cates a more confident classification decision.

The image-level ASD classification indicates the likeli-

hood of the ASD symptoms only based on the face

scanning patterns from a single face. It was more mean-

ingful to make the classification decision at the partici-

pant level to indicate the likelihood of the ASD

symptoms for each participant. We therefore defined

the participant-level classification score as the average

image-level classification score of each participant, as

shown in Figure 3. Considering that the imbalanced

ASD and TD training set sizes may cause biased SVM

classifications, we introduced a flexible threshold

instead of zero to determine the final classification

labels. The participants with the classification score

above the threshold were labeled as individuals poten-

tially with ASD, while those ones whose classification

score below the threshold were labeled as TD

individuals.

Figure 2. Illustration of partitioned face regions by K-means with different cluster numbers (K). (a) K 5 16. (b) K 5 32. (c) K 5 48.
(d) K 5 64.

4 Liu et al./Face processing in autism INSAR



Data Analysis. In order to evaluate the performance

of our proposed classification framework, we computed

the accuracy, specificity, sensitivity, the Receiver Opera-

tor Characteristic (ROC) curves, and the corresponding

area under the curve (AUC) of our framework. The

accuracy was calculated as the count of the correctly

predicted participants divided by the count of all partic-

ipants. The sensitivity (the true positive rate, TPR)

measured the percentage of participants with ASD cor-

rectly classified as ASD by the proposed framework. The

Figure 3. Participant-level classification based on image-level information fusion.
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specificity (the true negative rate, TNR) measured the

percentage of the TD participants correctly predicted as

TD individuals by our framework.

We then grouped the participants into four categories

according to their ground truth (actual positive or nega-

tive) and the predicted group membership (predicted

positive or negative). Here positive refers to the ASD

group, while negative refers to the TD group, with the

TD-age and the TD-IQ groups combined. Based on the

counts of four categories, we computed the accuracy,

the sensitivity, the specificity, and the false positive rate

(FPR) according to the following formulas:

Accuracy5
TR1TN

N

Sensitivity5
TP

TP1FN

Specificity5
TN

TN1FP

FPR5
FP

FP1TN

Then, a global threshold was set for all participants

according to their predicted scores to determine their

predicted group membership. Different thresholds were

evaluated to determine different accuracy, sensitivity

and specificity values. We then computed the ROC

curves by plotting all the TPR vs. FPR pairs, and the

AUC using the Matlab platform.

In order to identify which face regions best discrimi-

nated between groups, we further conducted additional

data analysis using a simple feature selection method.

First, we computed two mean histogram features from

the ASD group (denoted as FeatASD) and TD group

(denoted as FeatTD) respectively by taking the mean of

all image-wise histogram features with the same group

labels (ASD/TD). We then computed the mean feature

difference using the following formula: FeatDif 5

FeatASD 2 FeatTD, where bins in FeatDif with larger abso-

lute values indicated the regions that were more dis-

criminative. Regions with positive values were

preferred by the ASD group, whereas regions with neg-

ative values indicated the preference for the TD group.

After computing FeatDif, we could choose highest bins

and show the visualized result of selected discrimina-

tive regions.

Results

In this section, we comprehensively reported the per-

formance of our proposed framework on the datasets.

First, we reported the performance of our proposed

method (i.e. accuracy, sensitivity, specificity, ROC, and

AUC curves) for all face images, and also for the same-

race and the other-race faces separately (Table 2 and

Figure 4). Second, the participant-level classification

scores were plotted against participants’ chronological

age in Figure 5. We also reported the performance of

our framework for the ASD group from the TD-age and

the TD-IQ groups, respectively (Table 2).

Table 2. The Accuracy, AUC, Sensitivity, and Specificity of the Proposed Framework

Accuracy (%) Sensitivity (%) Specificity (%) AUC (%)

All Face Images 88.51*** 93.10 86.21 89.63
Same-Race Faces 81.61 75.86 84.48 82.40

Other-Race Faces 90.80 96.55 87.93 94.41

ASD vs. both TD Groups 88.51 93.10 86.21 89.63
ASD vs. TD-Age Groups 84.48 89.66 79.31 85.37

ASD vs. TD-IQ Groups 86.21 89.66 82.76 88.94

***p< .001

Figure 4. The ROC curves (a) and the accuracy curves (b) of
all faces, same-race and other-race faces.
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To evaluate the performance of our proposed frame-

work, we respectively computed the accuracy curves

and the ROC curves for all faces, the same-race faces,

and the other-race faces, respectively, as shown in Fig-

ure 4. The cluster numbers were tuned for different

experiments to reach the best accuracy. The cluster

numbers were, respectively, set to 16, 64, and 96 for

the same-race, other-race, and all faces in the current

model. The accuracy, sensitivity, specificity, AUC for all

faces and for same- and other-race faces were summar-

ized in Table 2. For all faces, the maximum classifica-

tion accuracy reached 88.51% (sensitivity 5 93.10%,

specificity 5 86.21%), and the AUC reached 89.63%.

A better performance of the framework based on the

other-race faces (accuracy 5 90.80%, sensitivity 5

96.55%, specificity 5 87.93%, & AUC 5 94.41%) in

comparison with the same-race faces (accuracy 5

81.61%, sensitivity 5 75.86%, specificity 5 84.48%, and

AUC 5 82.40%) was observed.

We then plotted the classification scores against the

chronological age of each participant in Figure 5, with

x-axis corresponding to the chronological age of partici-

pants and y-axis standing for the participant-level classi-

fication scores. The circle markers and the cross markers

represent the ASD and the TD groups, respectively. The

horizontal line represents the optimal decision thresh-

old (0.3255),1 at which the classification accuracy is

maximized. As shown in Figure 5, vast majority of chil-

dren in the ASD group scored above the threshold,

while majority of children in the TD group scored

below the threshold, demonstrating that the classifica-

tions made by the proposed framework were mostly

robust and unambiguous. No effect of age was observed

for the classification performance of the framework

(r 5 .17, p 5 .11, Pearson Correlation).

Besides calculating the accuracy of the classification

framework, we also evaluated the performance of our

algorithm to discriminate the ASD group from the TD-

age and the TD-IQ groups separately. The maximum

accuracy and the AUC of the framework were com-

puted, respectively, for the ASD vs. TD-age comparison

and the ASD vs. TD-IQ comparison. The results, as

listed in Table 2, showed that for the ASD vs. TD-age

comparison, the maximum accuracy of reached 84.48%

(with the sensitivity 5 89.66%, specificity 5 79.31%) and

the AUC reached 85.37%; for the ASD vs. TD-IQ com-

parison, the maximum accuracy reached 86.21% (with

the sensitivity 5 89.66%, specificity 5 82.76%) and the

AUC reached 88.94%. The results indicated that the

proposed framework can discriminatively classify ASD

participants from both TD groups.

After computing the accuracy of our proposed data

analysis method, we also analyzed the contribution of

different face regions to the classification. Figure 6a and

b show FeatASD and FeatTD, respectively: the x-axis indi-

cates the 64 regions obtained by K-means on the face

image, and the y-axis corresponds to the frequency of

fixation points on each region. Figure 6c and d, respec-

tively, shows the values of FeatDif and its absolute val-

ues. The most discriminative regions derived by FeatDif

are highlighted in Figure 7: purple regions indicated

the most discriminative areas where the ASD group

spent longer time looking at (the right eye and the area

slightly above the month), while cyan regions indicated

the most discriminative area where the TD group spent

longer time looking at (the area slightly below the left

eye), given the same observation time.

We then computed the histogram features on the

selected discriminative regions with our proposed

method, and used the selected features to re-perform

the prediction with the SVM framework proposed in

the paper. Interestingly, we found that the top seven

discriminating dimensions resulted in the accuracy of

79.31%, the sensitivity of 68.96%, and the specificity of

84.48%. This meant that if we only select the seven

most discriminative features from the original 64

features, we could still achieve a reasonably good

performance.

Discussion

The current paper proposed a machine learning frame-

work to identify children with ASD based on the face

scanning eye movement patterns. We adopted a data-

driven feature extraction method and a SVM to do the

classification. Results indicated that our machine learn-

ing model could deliver rather good performance of

Figure 5. The relationship between the participant-level clas-
sification scores and the age of participants in years, with an
optimal decision threshold of 0.3255.

1A participant is predicted as having ASD if the participant-level score

is higher than this threshold, and not having ASD otherwise.
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classifying the ASD and TD groups based on the face

scanning patterns (accuracy 5 88.51%; specific-

ity 5 86.21; sensitivity 5 93.10%; AUC 5 89.63%). In a

word, our findings evidently manifest the effectiveness

and feasibility of applying the machine learning algo-

rithm based on the face scanning patterns in classifying

and predicting ASD.

Besides the overall performance evaluation of our

model, we have also identified the most discriminative

facial areas that could result in 79.31% of accuracy to

classify the ASD and the TD groups. Particularly, the TD

group looked longer than the ASD group in the right

eye (from the observer’s view), and the area slightly

above the month; the ASD group looked longer than

the TD group at the area slightly below the left eye

(from the observer’s view). That is, these facial areas are

the most efficient ones in distinguishing the face scan-

ning patterns of ASD and TD groups. This finding may

also imply the abnormal face scanning patterns in indi-

viduals with ASD, consistent with the previous litera-

ture: they exhibit reduced attention to main facial

features (eyes, nose, and mouth), compared to the typi-

cal population. [e.g. Chawarska & Shic, 2009; Dalton

et al., 2005; Pelphrey et al. 2002; Spezio, Adolphs, Hur-

ley, & Piven, 2007; see Falck-Ytter & von Hofsten, for a

review]. The longer looking time at the area below the

eye in ASD was also found in a previous study using a

data-driven analytic approach [Yi et al., 2013]. This

novel looking pattern in ASD, as argued in Yi et al.

[2013], may result from ASD children’s strong tendency

to avoid direct eye contact with another person, pro-

posed as the “eye-avoidance” hypothesis in autism face

processing [Tanaka & Sung, 2013].

Overall, our study provides promising findings and

implications for the possibility of early detection and a

computer-aid diagnostic approach of ASD, which create

big challenges for the current clinical practice of ASD.

Despite its early onset, ASD is usually diagnosed several

years later, mainly based on interviews with parents

and clinical behavioral observations (i.e. ADOS, ADI-R).

Figure 6. The mean histogram features of the ASD (a) and the TD (b) groups, and their differences (c and d).
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Recognizing early signs of ASD provides opportunity for

early detection and early intervention. The early signs

and potential predictors of ASD included deficits in

joint attention, pretend play, perspective taking,

responses to own name, imitation, and so on [Lai, Lom-

bardo, & Baron-Cohen, 2013]. These early sings of ASD,

however, are not reliably observed in infants, which

makes the early detection of ASD very challenging.

Meanwhile, since the accuracy of the diagnosis relies

heavily on the clinicians’ expertise and experience, a

computer-aid diagnosis will improve the condition by

providing a more objective and reliable approach. Our

study is one of the first attempts to address these chal-

lenges. Moreover, modern remote eye tracking device

allows the participants to move their head freely and its

high sampling rates make it possible to collect massive

eye movement data in a short time. All these technique

advances, combined with well-developed data analytic

and classification algorithm, will facilitate the progress

of developing a reliable approach for early detection

and computer-aid diagnosis of ASD.

However, in spite of our promising findings and their

potential application prospect, there is still a long way

to go before we could apply this procedure in the actual

clinical practice due to several constraints. First, cau-

tions should be taken when using the face scanning

pattern as a biomarker for ASD diagnosis: the interpre-

tation of our method is constrained by the prevalence

of the ASD in the general population (around 1%),

which is much lower than the rate of ASD in our sam-

ple (33%) [Yerys, B. E., & Pennington]. Second, the face

scanning patterns could be age and culture adapted,

since people at different ages and in different cultures

may scan face differently [e.g. Fu, Hu, Wang, Quinn, &

Lee, 2012; Liu, Quinn, Wheeler, Xiao, Ge, & Lee, 2011;

Wheeler, Anzures, Quinn, Pascalis, Omrin, & Lee, 2011;

Yi et al., 2016]. Also, other characteristics of the ASD

sample (e.g. severity of the symptom, cognitive func-

tion, etc.) may also affect their face scanning patterns

[e.g. Yi et al., 2014]. Therefore, these factors should be

considered when applying our model to classify chil-

dren with ASD for particular cases. Third, considering

our sample size in the current study is relatively small

for the purpose of pattern classification, our method

and conclusions should be replicated in future studies

with larger samples in order to validate our machine

learning approach. Fourth, the predictive value of our

model should be evaluated in the future studies to track

a group of high-risk infants for several years, to deter-

mine whether the face processing pattern in infancy

could actually predict their severity of symptom when

being diagnosed several years later. Fifth, the current

study used a data-driven approach to extract features

from the eye tracking data. The algorithm could be

improved with more sophisticated models to determine

which and how many (at least) features of eye move-

ment indices could be identified to be use in the clini-

cal practice to identify children with ASD. Sixth, since

the atypical face scanning pattern is only one of numer-

ous potential indicator of ASD symptoms, future inves-

tigations should be undertaken to apply our method to

different stimuli (social or nonsocial stimuli), and tasks.

For example, Gliga and colleagues [2015] found that

the enhanced visual search performance of infants at 9

mouth old, reflected in their eye movements, could pre-

dict the severity of their autism symptoms at 15 and 24

mouths. This is another piece of promising evidence of

using eye movement indices as an early indicator to

predict later autism symptoms. Finally, our measure of

the face scanning eye movement patterns should be

combined with other types of psychological and physi-

ological measures (e.g. brain activities, skin conduct-

ance, speech, motions, body gestures, and facial

expressions, etc.) to obtain a more comprehensive mul-

timodel measure of the risk of ASD to aid the process of

diagnosis and early detection for ASD.

In summary, despite of the above limitations, our

study provides preliminary but promising evidence for

using the machine learning algorithm based on the face

scanning patterns to predict the ASD phenotype. This

could be one of the first attempts to develop a

computer-aid early detection and diagnosis system to

support the clinical practice of the screening and diag-

nosis of ASD. Future research should focus on further

Figure 7. The seven most discriminative regions derived from
FeatDif (Purple regions indicated discriminative the ones pre-
ferred by ASD, cyan regions indicated the ones preferred by TD).
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evaluating and validating the model in multiple ways,

and generalizing our method into different populations,

stimuli, tasks, and measures.
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